Expand each of the following, using suitable identities : $(-2 x+5 y-3 z)^{2}$
$(-2 x+5 y-3 z)^{2}$
Using $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x,$ we have
$(-2 x+5 y-3 z)^{2}=(-2 x)^{2}+(5 y)^{2}+(-3 z)^{2}+2(-2 x)(5 y)+2(5 y)(-3 z)+2(-3 z)(-2 x)$
$\quad=4 x^{2}+25 y^{2}+9 z^{2}+[-20 x y]+[-30 y z]+[12 z x]$
$=4 x^{2}+25 y^{2}+9 z^{2}-20 x y-30 y z+12 z x$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=x^{2}-1, \,x=1,\,-1$
Expand $(4a -2b -3c)^2.$
Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(x)=x^{3}$
Factorise of the following : $64 m^{3}-343 n^{3}$